Теплоизоляционные материалы: виды и свойства, характеристики современных материалов

Теплоизоляционные материалы: виды и свойства, характеристики современных материалов

Теплоизоляционные материалы: виды и свойства, характеристики современных материалов
СОДЕРЖАНИЕ
0

Реакция окисления

Вспомним, что химическими реакциями называются процессы, в которых образуются новые вещества. Это может происходить несколькими путями: с существенным изменением электронной структуры атомов, участвующих в реакции, и без изменения их структуры. Второй случай более простой — к нему относятся в основном обменные реакции, когда молекулы передают друг другу целые блоки, при этом не изменяя их состав и строение.

К таким реакциям относится, например, гашение соды уксусом. Реакции с более существенным изменением электронной структуры протекают сложнее и зачастую гораздо более бурно. В них обязательно должны участвовать два вещества: окислитель и восстановитель, которые условно обмениваются между собой электронами.

В результате этого сильно меняется строение связей: из менее выгодной конфигурации они перестраиваются в более выгодную (это и движет реакцию вперед), а «лишняя» энергия высвобождается в виде тепла и излучения. Не все окислительно-восстановительные реакции протекают именно так, но реакция горения, которая нас больше всего интересует, идет по такому пути.

Итак, что же требуется для нормального течения реакции горения? Прежде всего, сами окислитель и восстановитель. Первым в обычных условиях чаще всего является кислород — O2. Два атома в этой молекуле прочно связаны между собой, но энергетически они «предпочитают» связываться с атомами других элементов.

Если им предоставить такую возможность (ввести в контакт с топливом), произойдет бурная реакция. То, что мы обычно называем топливом, или горючим (дрова, бензин, торф и т.п.), с точки зрения химии называется восстановителем, с которым прочно связываются атомы кислорода. Некоторые вещества могут воспламениться при контакте с кислородом даже при комнатной температуре — металл калий, например.

Если бы процесс горения ограничивался вышеперечисленным, он бы не играл настолько важной роли в жизни природы и человека. Что делает его исключительным, так это цепной механизм, по которому протекает эта реакция. Представим другой известный пример окисления — ржавление железа. Оно протекает достаточно медленно, и существует лишь малый риск, что крошечной пятно ржавчины быстро расползется по всему образцу.

Однако реакция горения железа (есть и такая!) протекает совсем не так: тонкая железная «вата», или опилки, помещенные в атмосферу чистого кислорода, вспыхивают и за несколько мгновений полностью сгорают. Так происходит потому, что тепло, выделяющееся в ходе реакции, подогревает материал, позволяя ему легче вступать в реакцию с кислородом.

Остался лишь один необходимый элемент реакции горения: продукты, которые получаются в ходе этого процесса. Во многих случаях при сгорании топлива образуются газообразные вещества (углекислый газ, угарный газ, оксиды азота), некоторые из них уже не могут окисляться дальше. Оставаясь в зоне реакции, они только мешают процессу, так как не дают новым молекулам кислорода вступить в контакт с топливом.

В большинстве случаев на Земле эта проблема решается благодаря наличию гравитации и конвективным процессам в атмосфере: все это способствуют постоянному перемешиванию в зоне реакции и обогащению ее кислородом. Совсем не так обстоят дела в космосе, где горение затухает мгновенно, даже если гипотетически рядом еще остался кислород: продукты реакции настолько плотно окружают зону реакции, что цепной процесс прерывается.

Подведем промежуточные итоги: горение основывается на совокупности сложных процессов, каждый из которых критичен для быстрого и стабильного протекания реакции. Все факторы вместе часто объединяют в «пожарный тетраэдр», гранями которого являются кислород (или другой окислитель), горючее вещество, температура и существование цепной реакции.

Изделия из органического сырья

По экологическому фактору они стоят на первом месте, но их использование не всегда актуально. Для производства может использоваться следующее сырье:

  • древесное волокно;
  • бумага;
  • пробковая кора.
Предлагаем ознакомиться:  Термостойкая краска по металлу до 1000 градусов

На их основе получаются разнообразные утеплители.

Целлюлозная вата

Ее получают из древесного волокна. Из всех органических изделий, целлюлозная вата распространена больше всего. Применяется она в сыпучей форме или в виде плит. Ее использование ограничено рядом недостатков:

  1. низкая огнеупорность (для компенсации этого качества в состав может вводиться полифосфат аммония);
  2. подверженность воздействию грибка и плесени.

Бумажные гранулы

Для их производства в основном используется макулатура. Обработка специальными солями позволяет делать изделия не горючими. Гранулированная бумага заполняет полости и обладает хорошими водоотталкивающими свойствами. Основной недостаток заключается в ограниченной сфере применения.

Также при монтаже не обойтись без услуг специалистов, потому что такие работы требуют определенных навыков.

Пробковая кора

Теплоизоляционные материалы: виды и свойства, характеристики современных материалов

Из нее получают теплоизоляционные материалы путем прессования сырья при высокой температуре. Они отличаются:

  • легкостью;
  • долговечностью;
  • прочностью на изгиб и сжатие;
  • устойчивостью к гниению;

Для того чтобы материал не воспламенялся сырье обрабатывается специальными синтетическими пропитками, что отрицательно сказывается на экологическом факторе.

В качестве основы используются:

  • горные породы;
  • стекло;
  • пенополиуретан и пенополистирол;
  • вспененный каучук;
  • различные виды бетона.

Теплоизоляционные материалы имеют свои особенности — рассмотрим наиболее распространенные из них.

Каменная вата

В процессе изготовления участвует горная порода, которая расплавляется и превращается в волокно и воздух. Каменную вату применяют для утепления стен. Энергоемкий технологический процесс отражается на высокой стоимости материала. Еще одним существенным недостатком является специальная утилизация.

Теплоизоляционные материалы: виды и свойства, характеристики современных материалов

Каменная вата является пожаробезопасным материалом, потому что способна выдерживать высокую температуру. Она не подвержена гниению. Конструкции из нее обладают хорошими теплоизолирующими параметрами и высокой звукоизоляцией.

Перлит

Свойства этой вулканической породы были известны еще в прошлом веке. При нагревании ее объем значительно увеличивается. Утепление перлитом не вызывает особых сложностей. Гранулы засыпаются или задуваются в щели. Также он может входить в состав теплоизоляционного раствора как основной компонент.

Получаемые из него теплоизоляционные материалы являются экологически чистыми. Структура перлита не меняется со временем, поэтому не происходит усадка теплоизолирующего слоя. Он устойчив к влаге и открытому огню.

Минеральная вата

Это самый распространенный теплоизолятор. Он может выпускаться в различных формах – это и плиты, и цилиндры, и маты, и рыхлая вата. В качестве основного сырья используются доломиты, базальты и другие ископаемые. Теплоизоляционные материалы изготавливаются путем получения из минералов волокон и связывания их с помощью специальных смол.

Минеральная вата имеет ряд преимуществ:

  1. устойчивость к воздействию грибка;
  2. высокая пожаробезопасность;
  3. морозоустойчивость;
  4. дополнительная шумоизоляция;
  5. хороший показатель теплоизоляции.

При выборе материала нельзя не учесть и его недостатки. Вата является очень токсичной, поэтому требует изоляции от жилых помещений. Ее монтаж должен предусматривать пароизоляции, иначе на поверхности будет скапливаться конденсат.

Пеностекло

Стоимость этого материала достаточно высока, а монтаж потребует наличия дополнительной вентиляции. По остальным свойствам пеностекло превосходит другие неорганические изделия. Оно имеет достаточно прочную структуру, что позволяет устанавливать на нем крепежные элементы.

Пеностекло устойчиво к воздействию влаги и плесени и обладает высокой морозоустойчивостью. Все эти факторы обеспечивают длительный срок службы утеплителя.

Пенополиуретан

Современные теплоизоляционные материалы не могут обойтись без этого представителя. Для утепления пенополиуретан используется только в жидком состоянии. Для этого необходима специальная установка, в которой происходит смешивание компонентов с воздухом. В результате образуется аэрозоль, который равномерно наносится на поверхность.

Теплоизоляционные материалы: виды и свойства, характеристики современных материалов

Пенополиуретаном можно утеплять неровные поверхности, такой монтаж занимает минимальное количество времени. Несомненным плюсом является отсутствие стыков при монтаже. Полиуретан не подвержен воздействию биологический среды, но легко воспламеняется, вследствие чего происходит выделение токсичных газов.

Предлагаем ознакомиться:  Как просто и недорого сделать акриловый (композитный или полипропиленовый) бассейн на даче

Представляет собой шарики различных диаметров соединенные между собой. Получают пенопластовые плиты прессованием. Материал удобен в монтаже и выделяется такими свойствами как прочность и невысокая стоимость. Утепление требует дополнительной вентиляции, потому что пенопласт «не дышит».

Также требуется дополнительная обработка поверхности, потому что при попадании ультрафиолетовых лучей происходит разрушение структуры. То же самое происходит и при воздействии влаги.

Пенополистирол

Этот материал намного прочнее рассмотренного ранее пенопласта. Он не подвержен воздействию влаги. Улучшенную характеристику теплопроводности экструдированный пенополистирол получил за счет цельной микроструктуры. Воздух и влага не могут проникать внутрь материала, потому что отдельные ячейки изолированы друг от друга и наполнены воздухом.

Единственный фактор, которому не противостоит экструдированный пенополистирол – это огонь. Под его воздействием он выделяет токсические вещества. Также утепление, выполненное из этого сырья, «не дышит».

Огнеупорные материалы

Простая логика подсказывает нам: чтобы материал был огнеупорным, он просто не должен вступать в реакцию горения. Эта идея широко применяется на практике, но не все оказывается так просто. Например, большинство строительных огнеупорных материалов по химическому составу представляет собой оксиды и их смеси, то есть уже максимально окисленные вещества.

Кислород попросту не может прореагировать с таким соединением, поэтому горения не происходит. В реальности, однако, в условиях пожара присутствует много поражающих факторов, и сам факт сгорания — лишь один из них. К другим относится, конечно, очень высокая температура. Из-за этого даже негорючий материал может существенно ухудшить свою структуру и даже разрушиться, хотя технически он не вступал в реакцию горения.

Теплоизоляционные материалы: виды и свойства, характеристики современных материалов

Как обеспечить защиту от высокой температуры? На этом поприще, к сожалению, велосипед не изобретешь: теплоизоляция (что от высоких, что от низких температур) в абсолютном большинстве случаев основывается на воздушной прослойке или «чистой» толщине покрытия. Часто эти факторы сочетаются, поэтому важной характеристикой огнеупорных материалов является их пористость.

Для носимой одежды в этом случае используется та же идея, что в зимних пуховиках: лучшим теплоизолятором является материал очень малой плотности, например вата. Важно упомянуть, что химическая стойкость материалов срабатывает не только в случае пожара, но и в контакте с другими едкими веществами, хотя и не всегда огнезащиты оказывается достаточно, чтобы «удержать» сильные кислоты, например.

Простейшим примером огнеупора может считаться кирпич, сделанный из смеси оксидов и силикатов, обладающих высокой химической инертностью. Подобные материалы широко применяются в промышленности для строительства плавильных печей, котлов и прочего. На основе твердых оксидных материалов создаются и волокнистые огнеупоры, пригодные для изготовления пористых (минеральная вата) и гибких материалов (шнуры, одеяла, одежда).

Другой веткой развития волокнистых огнеупорных материалов занимается химия полимеров, а наибольших успехов в этой области удалось добиться арамидным волокнам (больше известным под маркой Kevlar). Благодаря наличию в своей структуре бензольных колец и амидных связей, такие материалы обладают существенной термостойкостью, не плавятся и начинают разлагаться лишь при температурах около 500 градусов Цельсия. При соответствующей обработке арамидные волокна кратковременно выдерживают и более высокие температуры, а также открытое пламя.

Именно арамидные ткани лежат в основе наиболее современных носимых огнезащитных материалов. Так, в НИТУ «МИСиС» недавно был создан костюм, предназначенный для пожарных и всех, кто работает в условиях чрезвычайной ситуации. Материал костюма представляет собой «сэндвич» из трех слоев, каждый из которых защищает от определенных поражающих факторов.

Внешний слой — это арамидная ткань, дополнительно пропитанная составом для герметизации и придания водоотталкивающих свойств. Это материал обеспечивает защиту от пламени температурой до 1200 градусов Цельсия, а в случае попадания на костюм концентрированных кислот или щелочей препятствует их впитыванию за счет гидрофобного покрытия.

Предлагаем ознакомиться:  Укладка пароизоляции на крыше какой стороной

Теплоизоляционные материалы: виды и свойства, характеристики современных материалов

Наконец, внутренний слой защищает человека в том случае, если работа ведется в присутствии сильных электромагнитных полей. Эта разработка практически не имеет аналогов в мире: материал основан на магнитных порошках из сплавов кобальта, никеля, железа и стронция. Эти дисперсии наносят на арамидные волокна, из которых изготавливаются вставки, защищающие жизненно-важные органы от внешних полей. Немалую роль здесь играет сочетание магнитожестких и магнитомягких соединений.

Примером совершенно другого по характеру огнеупорного материала является графит. Несмотря на то, что по составу он представляет собой чистый углерод, который горит с образование углекислого газа, графит очень плохо поддерживает горение. Вместо того чтобы быстро вспыхнуть, он неторопливо тлеет, а интенсивно сгорает лишь при постоянных температурах около 1000 градусов Цельсия.

Это свойство само по себе делает графит привлекательным материалом для огнеупоров. Кроме того, графит обладает уникальной структурой: в нем атомы углерода образуют массив шестиугольников, которые упакованы друг на друге слоями. Из-за этого графит очень хрупок и часто существует в виде порошков (чешуек). Этот же факт позволил создать на его основе высокопористый материал — пенографит. Способ его получения заслуживает отдельного разговора.

Благодаря своему слоистому строению, графит способен удерживать внутри себя включения посторонних веществ. Такое соединение — интеркалированный графит — получается, например, при взаимодействии порошка графита с серной или азотной кислотами. Если полученное вещество резко нагреть, заключенные внутри кислотные остатки превратятся в газообразные продукты и в буквальном смысле разорвут слои графита на мелкие фрагменты.

Пенографит сочетает в себе сразу несколько свойств, идеально подходящих для огнеупоров: во-первых, он в большой степени химически инертен и плохо поддерживает горение. Во-вторых, за счет высокой пористости он работает как теплоизолятор благодаря заключенным в порах газам. Все эти свойства широко используются в огнезащитных покрытиях на основе пенографита.

В простейшем случае в строительную краску добавляется порошок интеркалированного графита, который в случае пожара значительно расширяется и образует медленно тлеющую пену. Такой материал, конечно, одноразовый, однако в случае возгорания он надежно защищает конструкцию от пламени и температуры в течение длительного времени, за которое пожар можно успеть потушить.

Теплоизоляционные материалы: виды и свойства, характеристики современных материалов

Чем дальше, тем все более сложными и «умными» становятся огнеупорные материалы. На смену кирпичам приходят волокнистые композиты, а вместо старых добрых огнезащитных пропиток разрабатываются продвинутые высокотехнологичные покрытия на основе очень непростой химии. По словам Андрея Игнатова, одного из разработчиков вышеупомянутого костюма для пожарного, созданию широко используемых огнезащитных материалов препятствует сегодня не нехватка современных технологий, а их высокая стоимость. Однако химики, физики и технологи неустанно работают над снижением их стоимости, а нам остается только ждать.

Не горит.

Тарас Молотилин

Основные характеристики

Главной функцией любого утепления служит предотвращение тепловых потерь. Все вышеперечисленные виды по-разному справляются с этой задачей. Ее определяют специфические характеристики теплоизоляционных материалов:

  • влажность — ее значение должно быть минимальным, для обеспечения минимальных потерь тепла;
  • пористость — чем она выше, тем легче материал и выше теплоизоляция;
  • плотность, теплоемкость;
  • паропроницаемость — ее высокое значение требует обустройство дополнительной пароизоляции;
  • водопоглощение – это способность удерживать впитываемую влагу, при ее повышении свойства будут ухудшаться;
  • максимальная температура эксплуатации — это предел, при котором сохраняются необходимые качества теплоизолятора.

Все эти факторы влияют на главный качественный показатель – теплопроводность, который служит основным критерием при выборе. Она определяется количеством тепла, отданным 1 м2 площади.

Комментировать
0
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector